
Int. J. Advanced Networking and Applications 125
Volume: 01, Issue: 02, Pages: 125-130 (2009)

Impact of Dual Core on Object Oriented
Programming Languages through UML

Dr. Vipin Saxena

Associate Professor, Department of Computer Science
Babasaseb Bhimrao Ambedkar University (Central University)

Lucknow (U.P.), 226025, INDIA
Email–vsax1@rediffmail.com

Deepa Raj
Assistant Professor, Department of Computer Science

Babasaseb Bhimrao Ambedkar University (Central University)
Lucknow (U.P.), 226025, INDIA

Email- deepa_raj200@yahoo.co.in

-- ABSTRACT--
Nowadays, different kinds of processors are appearing in the computer market,
therefore it is necessary to observe the performance of these processors at the early stage
of computation of object oriented programs. In this context, the present paper deals
with the evaluation of the performance of Dual Core and Core 2 Dual processors
architecture for the Object Oriented Programming languages. The main objective of
this work is to propose the best object oriented programming language for the software
development on these said processors architecture. A well known modeling language i.e.
Unified Modeling Language (UML) is used to design a performance oriented model,
consisting of UML class, UML sequence and UML activity diagrams. Experimental
study is performed by taking the two most popular object oriented languages namely
C++ and JAVA. Comparative study is depicted with the help of tables and graphs.

Keywords: UML, Activity diagram, C++, Dual core , Core 2 dua

Paper Submitted: 23 June 2009 Accepted: 11 Oct 2009

1. Related Work

In the today’s scenario, various researchers are
developing the models by the use of popular and
powerful object oriented modeling language i.e. UML
[5]. A lot of literature is available on modeling
problems by the use of UML, but limits research papers
are available in literature on applications of UML in the
field of Computer Architecture problems. By the use of
UML, software and hardware architecture problems can
be easily represented pictorially and performance can
be judged after modeling of the problems. Complex
research problem can be easily solved by designing the
UML models and performance of these models can be
judged by message passing technique among the
objects. Real time system through UML is described
by Selic and Rumbaugh [2]. The first represented of
UML in the field of telecommunication sector is
described by Holz [7]. This is one of the important
papers to select the best programming language for
distributed computing system. Drozdowski [9]
explained a technique to find out the execution time for
distributed application. In [5], tools and techniques for
performance measurement of large distributed multi
agent system are explained. A modeling for architecture
of Pentium IV is reported by Alenn Hinton [11]. The

computer architecture models which can be easily used
for the further research work are available in [6]. Web
based application can also be judged through UML and
it is reported in [1]. UML based Vehicle control system
is also reported in the literature by Walther et al. [12].
OMG is an important active group for inventing the
different versions of the UML. The research papers on
these are [3,4] in which group describes the different
types of UML diagrams based on XML Meta data
specification. Performance modeling and prediction
tools for parallel and distributed programs are described
by Planna et al. [8, 13] and these papers also describe
customizing the UML for modeling performance
oriented applications. Recently Saxena et al. [14]
proposed the UML model with performance evaluation
for the multiplex system for the processes which are
executing in the distributed computing environment.
UML Model of Instruction Pipeline is also explained by
Saxena & Raj [15] in which they observed the
performance of object oriented instructions executing in
distributed computing environment.
Java is an object oriented platform independent language
and many of the software designs are coded with the help
of the Java programming language and on the other hand
C++ is also an object oriented language generally used for
software applications as well as for system programming.
In the present paper, the performance of these two

Int. J. Advanced Networking and Applications 126
Volume: 01, Issue: 02, Pages: 125-130 (2009)

programming languages is observed on the Dual Core and
Core 2 Dual processor system by proposing a model
through UML. The main aim of this paper is to select the
best Object Oriented Programming language for writing
the software codes for long computations purpose which
also saves the execution time. The complete UML
Diagram is designed for execution of instructions of a
program for dual core processor. UML class diagram,
UML sequence diagram and UML activity diagram are
also given in the paper and comparison is shown through
tables and graphs.

2. Background
2.1 UML Process Definition
Let us first define the process which may be the group
or block of instructions of program, macro, sub
programs and subroutines. For defining the process,
there is a need of the processing element. The
processing element is defined as a stereotype and
generally used to handle the concurrent process
executing in the parallel and distributed environments.
The famous approach to handle the concurrent
processes is Torus Topology. The following Fig 1(a)
shows the UML definition of processing unit. The
UML Class Diagram of Process is completely defined
in Fig 1(b).
The instance of the process is defined by the use of
object .xyz which is shown in Fig 1(c). The set of the
instances of the class process is modeled by the use of
multiple objects which is also shown below in Fig 1(d).

(a) Definition of Processing Unit

 (b) Class Definition of Process

 (c) Instance of Class

(d) Multiple Instances of Object

Figure 1. UML Class Representation of Process and
Processing Unit

In the above figure process shows the name of multiple
objects.

2.2 Dual Core Processors

In the today’s scenario a different kinds of processors
are appearing in the computer market designed by the
various hardware companies. To increase the
computing speed in respect of single core processors,
dual core processors are designed. The dual core is an
architecture that refers to a central processing unit
(CPU) with two complete execution cores in a single
processor. These two cores, theirs caches and cache
controller all are built together on a single integrated
circuit (IC). Performance of dual core processor is not
double as compared to a single core processor but it is
significantly better than the single core processor. Since
there are two pipelines, two instructions can be
executed simultaneously and two processor caches
allow more data on processing unit for quick access.
The dual core block diagram is represented in Figure 2
which is currently used by most of software developers
due to its scalability and time consuming. On the basis
of this diagram, the comparative specifications of dual
core and core 2 duo processors architecture are
recorded in Table 1.

 Figure 2. Block Diagram of Dual Core Processor

 In a dual core and core 2 duo, there are two CPU cores,
one L1_CACHE in each core one L2_CACHE is shared
by both the cores mounted on a single chip.

<<processing_unit>>
 _.process

<<processing_unit>>
xyz.process

<<processing_unit>>

process_id : integer
process_size : integer
process_in_time : string
process_out_time : string
process_priority : integer

process_create()
process_delete()
process_update()
process_join()
process_suspend()
process_synchronize()

 L2_ CACHE

CPU CORE 1
L1_ CACHE

CPU CORE 2
L1_ CACHE

Base Class

 <<stereotype>>
processing_unit

process_id :integer
process_type :string
process_cardinality :integer

Int. J. Advanced Networking and Applications 127
Volume: 01, Issue: 02, Pages: 125-130 (2009)

:process :cache :queue :decode :execute :ALU

load fetch
decod

Execut
proces

ack

save

loa

Table 1. Specifications of Dual Core and Core 2 Duo
Processor Architecture

3. UML Modeling of Dual Core Processor Architecture
3.1 UML Class Model
Now let us design UML Class model and shown in Figure 3
which consists of thirteen major classes namely process,
cache, L1_cache, L2_cache, I_cache, D_cache, ALU, Fetch,
I_queue, Decode, Execute, Branch. In this class diagram
initially process loads the instruction from memory to both
the L1_cache and L2_ cache. Fetch class fetches the
instruction from both L1_cache to Pipeline. If there is
L1_cache miss then fetch takes place from L2_cache.
Decoder is used to decode the instructions one by one and
then execution takes place by Execute class. ALU, Branch
is a component of Execute class used to execute the
instructions, Branch used to check the branch in the
instructions. Same procedure repeats for the next set of
instructions.

Figure 3. UML Class Diagram for Process Execution for
Dual Core Processor

3.2 UML Sequence Diagram
For Dual core and Core 2 Duo processors architecture,
execution sequences of instructions are arranged by means
of a UML sequence diagram as given in Figure 4. In this
diagram one can see that how message passing takes place
among the different objects. This figure also shows that how
long computation time represented through object life line is
required for execution of instructions and arranged for
process.

Figure 4. UML Sequence Diagram for Process
Execution for Dual Core Processor

3.3 UML Activity Diagram

For the execution of processes on Dual Core and Core 2
Duo processor architecture, UML activity diagram for
process execution is also designed and given below in
Fig 5. This diagram shows the steps involved in
executing a process under both the processors.

Figure 5. UML Activity Diagram for Process
Execution for Dual Core Processor

4. Experimental Study and Results
To check the performance of the above UML designed
model, a case study is considered by taking the
sequence of instructions to be executed in the five run
by taking average technique. Sample programs are
designed in C++ and JAVA by increasing the sequence
of instructions up to 105 lines of code. These two object

Specification
Item

Dual Core Core 2 Dua

Technology 45nm 45nm

Cache 2MB L2 6MB L2

Clock speed 2.70 GHz 3.33GHz.

Processor No. E5400 E8600

Front side Bus 800 MHz 1333 MHz

Fetch process

Load Process

Execute

Decode process

Store in D_Cache

No

Another
Process

Yes

cach
e

proces
s

L1_cac L2_cac
he

D_cach
e

I_cach
e

I_cach
e

D_cach
e

Fetc
h

I_queu
e

Execut

Decod
e

AL

Branch

Int. J. Advanced Networking and Applications 128
Volume: 01, Issue: 02, Pages: 125-130 (2009)

oriented software languages for executing a program of
different sizes under Dual Core and Core 2 Duo
processor are specially considered since most of the
software companies are developing the applications by
writing software codes in these object oriented
languages. Therefore, we compare these two object
oriented languages on recently used processor. This
architecture system is well accepted by most of the
software companies and most of the applications are
done on this architecture.

 A comparative study of execution of instructions for
these two object-oriented software languages is
observed. The execution time is increasing for these
two programming languages as the sets of instructions
are increasing. The computed execution timing in
seconds for these languages is given in Tables 2-3.
Table 2 and 3 are prepared for Dual Core and Core 2
Duo processor architecture, respectively. From the
tables, It is observed that JAVA is more suitable object
oriented language in comparison of C++ as a number
of instruction are increasing, the computation time is
much smaller in comparison of C++. It is happening for
both the processors architecture. Therefore, JAVA
programming language is recommended for long
computations.

In the Table 3, average execution time is also recorded
for C++ and JAVA on both the Processor’s architecture
as shown in Table 3 and it is observed that Core 2 Duo
processor architecture is better processor architecture in
comparison of Dual Core processor architecture since
for both the programming languages, the computation
time is lower. For getting the quick interpretation, the
above tabulated data is also compiled in the form of
graph and represented below in Figures 6 & 7 for Dual
Core and Core 2 Duo Processors architecture,
respectively.

0
1
2
3
4
5

10 10
0

10
00

10
00

0

10
00

00

lines of code

Ex
ec

ut
io

n
tim

e
in

se

co
nd

s

C++
Java

Figure– 6 Execution Time of C++ and Java on Dual
Core Processor

0

1

2

3

4

5

10 100 1000 10000 100000

Lines of code

E
xe

cu
tio

n
Ti

m
e

(in

S
ec

on
ds

)

C++
Java

Figure- 7 Execution Time of C++ and JAVA on
Core 2 Dua Processor

0
1
2
3
4
5
6

10 10
0

10
00

10
00

0

10
00

00

Lines of code

Ex
ec

ut
io

n
Ti

m
e(

in

se
co

nd
s)

Dual core
core 2 dual

 Figure- 8 Execution time of C++ on Dual Core and
Core 2 Dua Processor

Figure- 9 Execution time of JAVA on Dual core and
Core 2 Dua Processor

0
1

2
3

10 10
0

10
00

10
00

0

10
00

00

Lines of code

Ex
ec

ut
io

n
tim

e
(in

se

co
nd

s) Dual core
core 2 dual

Int. J. Advanced Networking and Applications 129
Volume: 01, Issue: 02, Pages: 125-130 (2009)

 Table 2: Execution Time of C++ and Java on Dual Core Processor Architecture

Table 3. Execution Time of C++ and Java on Core 2 Duo Processor Architecture

Table 4: Comparison of Execution Time of C++ & Java on Dual Core and Core 2 Duo Processors

Lines of
Code

10 102 103 104 105

P/L C++ Java C++ Java C++ Java C++ Java C++ Java

Execution
Time in
Seconds

2.34 1.15 2.64 1.56 3.49 1.93 3.79 2.51 5.31 2.74

2.36 1.16 2.64 1.56 3.48 1.95 3.70 2.52 5.31 2.73

2.37 1.18 2.65 1.54 3.44 1.97 3.72 2.51 5.32 2.73

2.33 1.14 2.66 1.58 3.43 1.90 3.77 2.52 5.32 2.74

2.32 1.13 2.63 1.52 3.42 1.91 3.80 2.51 5.33 2.74

 Lines of
Code

10 102 103 104 105

P/L C++ Java C++ Java C++ Java C++ Java C++ Java

Execution
Time in
Seconds

2.14 .926 2.47 1.36 3.29 1.703 3.39 2.375 4.10 2.54

2.34 .926 2.57 1.37 3.09 1.702 3.49 2.375 4.15 2.54

2.04 .926 2.40 1.37 3.39 1.700 3.33 2.375 4.14 2.54

2.22 .925 2.40 1.36 3.29 1.702 3.42 2.375 4.13 2.53

2.11 .927 2.41 1.36 3.17 1.704 3.36 2.376 4.11 2.55

 Lines of Code 10 102 103 104 105

P/L C++ Java C++ Java C++ Java C++ Java C++ Java

Dual Core
Processor

2.34 1.15 2.64 1.56 3.49 1.93 3.79 2.51 5.31 2.74

Core 2 Duo
Processor

2.17 .926 2.45 1.36 3.24 1.703 3.39 2.375 4.12 2.54

Int. J. Advanced Networking and Applications 130
Volume: 01, Issue: 02, Pages: 125-130 (2009)

5. Concluding Remarks
From the above work it is concluded that UML
modeling is a powerful modeling language to
represent software architecture and research work
visually. Performance of Dual Core and Core 2
Duo processors architecture for two most popular
object-oriented software languages by taking the
variation in lines of code, is observed. It is
concluded that Java programming language takes
less execution time as compared to C++ for both
the processors. It is also found that Core 2 Duo
Processor is much faster than the Dual Core
processor architecture. Therefore Core 2 Duo
processor is very powerful and recommended for
long computations related to the Java object-
oriented Programming language.

6. Acknowledgements
Authors are very thankful to Prof. B. Hanumaiah,
Vice Chancellor, Babasaheb Bhimrao Ambedkar
University (A Central University), Vidya Vihar,
Rai Bareli Road, Lucknow, India, for providing the
excellent computation facilities in the University
Campus. Thanks also due to the University Grant
Commission, India for providing financial
assistance to the University for this Research
Work.

References
[1]. J. Conallen ,"Modeling Web Application
Architectures with UML", Communication of the
ACM 42(10), 63-70, (1999).

[2]. B. Selic, and J. Rumbaugh., "UML for
Modeling Complex Real Time Systems", Available
Online Via www.rational.com/Products/
Whitepapers/100230.Jsp.

 [3]. OMG, “Unified Modeling Language
Specification”, Available Online Via
www.omg.org , (2001).

 [4]. OMG, “XML Metadata Interchange (XMI)
Specification”, Available Online Via.
www.omg.org , (2002).

 [5] G. Booch , J. Rumbaugh, and I. Jacobson,
"The Unified Modeling Language User Guide ",
Addison Wesley, Reading, MA (1999).

 [6]. K. Hwang. "Advanced Computer
Architecture", McGraw–Hill Series in Computer
Engineering, Inc Publishing, (1993).

 [7] E. Holz. "Application of UML within the
Scope of New Telecommunication Architectures",
In GROOM Workshop on UML, Mannheim :
Physicaverlag, (1997).

 [8]. S. Pllana and T. Fahringer, "UML based
Modeling Performance Oriented Applications in
<<UML>>2002",Model Engineering Concepts and
Tools, Springer-Verlag. 2002, Dreseden, Germany,
(2002).

 [9]. M. Drozowski, “Estimating Execution Time of
Distributed Application”, Parallel Processing and
Applied Mathematics: 4th International conference
PPAM 2001, LNCS 2328, Springer–Verlag , pp
137-142, (2002).

[10]. A. Helsinger, R. Lazarus, W. Wright & J.
Zinnky, “Tools and Techniques for erformance
Measurement of Large Distributed Multi Agent
System", Proceedings of AAMAS 03 Conference,
Australia. p. 843-850 (2003).

[11]. H. Allen, “Microarchitecture of Pentium IV
processor”, Desktop Platform Group, Intel
Corporation

[12]. M. Walther, J. Schirmer, P.T. Flores, A.
Lapp, T. Bertram and J. Peterson, "Integration of
the Ordering Concept for Vehicle Control System
CARTRONIC into the Software Development
Process using UML Modeling Methods" , In SAI
2001 World Congress Detroit, Michigan, USA,
(2001).

[13]. S. Pllana, and T. Fahringer, "UML based
Modeling of Performance Oriented Applications",
Winter Simulation Conference (2002).

[14].V. Saxena, D. Arora and S. Ahmad , "Object
Oriented Distributed Architecture System through
UML". IEEE International Conference proceedings
on Advanced in Computer Vision and Information
Technology, November 28-30 (Sponsored by IEEE
Transactions, U.S.A.), 305-310, ISBN:978-81-
89866-74-7 (2007).

[15]. V. Saxena, D. Raj, " UML Modeling for
Instruction Pipeline Design”, International
Conference on Software Engineering
2008,organized by www.waset.org from Aug. 29-
31, 1 Sept., pp. 293-296, SINGAPORE (2008).

